Calculates similarity-sensitive normalised subcommunity beta diversity (an estimate of the effective number of distinct subcommunities). This measure may be calculated for a series of orders, represented as a vector of qs.

norm_sub_beta(meta, qs)

Arguments

meta

object of class metacommunity

qs

vector of mode numeric containing q values

Value

norm_sub_beta returns a standard output of class rdiv

References

R. Reeve, T. Leinster, C. Cobbold, J. Thompson, N. Brummitt, S. Mitchell, and L. Matthews. 2016. How to partition diversity. arXiv 1404.6520v3:1–9.

Examples

pop <- data.frame(a = c(1,3), b = c(1,1))
row.names(pop) <- paste0("sp", 1:2)
pop <- pop/sum(pop)
meta <- metacommunity(pop)

# Calculate normalised subcommunity beta diversity
norm_sub_beta(meta, 0:2)
#>           measure q type_level type_name partition_level partition_name
#> 1 normalised beta 0      types              subcommunity              a
#> 2 normalised beta 0      types              subcommunity              b
#> 3 normalised beta 1      types              subcommunity              a
#> 4 normalised beta 1      types              subcommunity              b
#> 5 normalised beta 2      types              subcommunity              a
#> 6 normalised beta 2      types              subcommunity              b
#>   diversity dat_id transformation normalised  k max_d
#> 1  1.000000  naive             NA         NA NA    NA
#> 2  1.000000  naive             NA         NA NA    NA
#> 3  1.016552  naive             NA         NA NA    NA
#> 4  1.060660  naive             NA         NA NA    NA
#> 5  1.031250  naive             NA         NA NA    NA
#> 6  1.125000  naive             NA         NA NA    NA