Calculates the low-level diversity component necessary for calculating normalised beta diversity.
norm_beta(meta)
object of class metacommunity
norm_beta
returns an object of class relativeentropy
Values generated from norm_beta()
may be input into subdiv()
and
metadiv()
to calculate normalised subcommunity and metacommunity beta
diversity.
R. Reeve, T. Leinster, C. Cobbold, J. Thompson, N. Brummitt, S. Mitchell, and L. Matthews. 2016. How to partition diversity. arXiv 1404.6520v3:1–9.
pop <- data.frame(a = c(1,3), b = c(1,1))
row.names(pop) <- paste0("sp", 1:2)
pop <- pop/sum(pop)
meta <- metacommunity(pop)
# Calculate normalised beta component
b <- norm_beta(meta)
subdiv(b, 1)
#> measure q type_level type_name partition_level partition_name
#> 1 normalised beta 1 types subcommunity a
#> 2 normalised beta 1 types subcommunity b
#> diversity dat_id transformation normalised k max_d
#> 1 1.016552 naive NA NA NA NA
#> 2 1.060660 naive NA NA NA NA
metadiv(b, 1)
#> measure q type_level type_name partition_level partition_name
#> 1 normalised beta 1 types metacommunity
#> diversity dat_id transformation normalised k max_d
#> 1 1.031047 naive NA NA NA NA